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Abstract. This work aims to achieve a novel approach to identify text
based content written in roman script which conveys meaning in Hindi
language.The research work proposes a methodology to identify language
based on semantic meaning of the text. The solution is approached by
means of feature extraction which are eventually fed to Artificial Neural
Network(ANN). The final output of the ANN is multiplied with the fea-
ture vector and then fed through a auto-encoder and a Generative Adver-
sarial Network(GAN). Which then trains the model in a semi-supervised
manner.The feature extraction defines a feature vector and ANN-model
then detects the probability of language classified correctly. The data set
was curated using scarping data from web and then cleaning it.Data set
was used to train the model.Data from common chat applications was
also used and curated to form the data set.
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1 Introduction

Language Identification(LID) is one of the key problems in any task correspond-
ing to Natural Language Processing(NLP). It being one of the most primitive
problem in NLP. For any processing with the text in a unknown language it is
very important to classify which natural language does the text belong to.With
the proliferation of internet in our lives we as humans have been surrounded by
digital media and content in form of text. Content is written using of natural
languages. The task however becomes complex when there is no knowledge of
the script that is being used to convey the meaning of the language. Different
languages are more or less complete in the set of phonemes by the virtue of
sound their characters make or usually multiple syllables help realize all the
phonetics present. Thus a text can be transliterated meaning it can written us-
ing script of some other language where using words and syllables phonetically
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similar to mean something totally different in another language. The first step
to translate such text is to detect which language does this transliterated text
intend to convey. In context of Indian Languages and most specifically Hindi
which is spoken and understood by majority of people in Indian Subcontinent.
Meanwhile smart-phones and computers are becoming close to ubiquitous and
majority of communication is done digitally. We use keyboards to generate con-
tent and express. Keyboards by default are in Roman Script i.e. the simple 26
English alphabets. Although there are keyboards in Devanagari they are tedious
and cumbersome to use. This has caused people to type their languages in Ro-
man script. Were the sentences make little or no sense in languages which use
Roman script but are phonetically very similar to their own language.

Thus when read out the sentences they sound like they are being spoken in na-
tive language. In our case of concern more specifically Hindi. Detection of such
text and to label them is a challenging and novel area of research.Detection and
labelling of text which sounds phonetically similar to the language that it was
intended to be written in is challenging because many features that can be used
to easily classify a language are lost due to limited scope of different scripts.
The area offers an opportunity to explore and apply myriad of concepts ranging
from novel information retrieval techniques used in Natural language processing
to Deep learning techniques and architectures in Machine learning. The research
in this area will also shed light on novel ways to understand phonetics of texts
and will help map languages based on phonetics also.Thus serving as interesting
problem to Computational Linguists and Machine Learning community.

The current state-of the art models are either based on statistical calculations
or either neural networks based transliteration models which are strictly su-
pervised learning in nature. This work proposes to use new method which is
semi-supervised in nature.Despite the current models being used extensively
the current models still lack satisfaction and have room for improvement. The
current neural machine transliteration systems use maximum likelihood estima-
tion(MLE) principle for training the model. Which means to maximize the prob-
ability of a target ground truth sentence given the source sentence.There have
been works to work around this.Instead Generative adversarial networks can be
used for minimizing the distance between the features extracted and features
build using the Generative Networks.The model aims to extract features from
the actual data and also generate its own features using Generative Networks
which are then compared with the original features using the Discriminator part
of GANs which labels the feature vectors as real or fake. Meaning seeing the
feature vectors they actually make a choice about which category they might
have been generated from. The two parts of the Generative Adversarial Network
play a Min-Max game with each other. Eventually making generator better at
generating more real like data to fool the discriminator.The following construct
is used to make the Artificial Neural Network train themselves of the particular
task in hand as same gradients that flow for error correction in the Generator
Network can flow back into the ANN helping the network to backpropagate its
errors. The subsequent sections describe related work. Propose the model and
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explain related concepts. Finally results are discussed,conclusion is made and
paper sets scope for future works.

2 Related Works

In this section, the work closely related to our study is reviewed to give a idea of
progress. Transliteration is a well documented problem with many researchers
attempting to solve the problem fully. The transliteration of Indian languages
has been discussed by scholars since late 19Th century. A loss-less romaniza-
tion system for indic languages was conceptualized when Charles Trevelyan and
many other scholars, together in the Transliteration Committee of the Geneva
Oriental Congress,on Sept 1894 agreed for transliteration of Sanskrit test to be
done using international alphabet for Sanskrit transliteration(IAST)[1].There
have been multiple advancements in language transliteration since then. De-
vanagari transliteration that is Devanagari to roman script, often referred to
as romanization is done using multiple approaches. The transliteration process
uses language identification, named entity recognition and then the process of
conversion into another language. There have been still no standard system for
conversion of Devanagari to Roman Script[2].Malik Abbas et.al.[3] attempted
something that is very different from romanization.They tried to build a sys-
tem for Urdu Hindi machine transliteration using statistical models and finite
state machines (FSM) which gives an novel idea for rule based transliteration. P
koehn et. al. [10] also give statistical machine translation techniques which deal
with the formulation of efficient data formats for translation in general. The
use case similar to ours was attempted by the Yuxiang Jia et. al. [4] for Chi-
nese languages. They use n-grams Markov models to achieve the task of English
Chinese back transliteration. Our model is designed for back transliteration of
English Hindi and uses Deep Learning (ANNSs) instead. Generative Adversar-
ial Networks[7][8] in Ian GoodFellow et.al. were shown as novel idea that could
easily underline the generator distribution for any task. Since then GANs have
been used by means of building various architectures around them for solving
multiple problems. They have also proved very successful in the task of face
generative , text to image generation to name a few. Generative Adversarial
Networks are also thought to be applied to language translation task[9].There is
very active research for machine translation going on in Google which resulted
them being able to detect and translate web-pages making content on web more
accessible to all by putting down language barriers for eg Britz and Kenny et
al.[11] propose novel work which aims to remove the limitations of neural ma-
chine translation(NMT) which is that they are very expensive to train which
eventually gives very practical advise based on empirical results they found for
English to German translation task. This work will make neural machine trans-
lation default standard and ubiquitous for language detection and translation.
Therefore this piece of research aims to contribute to achieving transliteration
using Generative Adversarial Networks.The focus is on first part of translitera-
tion that is language detection using generative adversarial networks.As a result
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of which this work aims to give a means of detection of transliterated Hindi text
in Roman script using Generative Adversarial Networks.Li et. al[15] have shown
that Generative Adversarial Networks can be used in dialogue generation.They
modeled this task as a reinforcement learning where two systems,a generative
model is used produce response sequences, and a discriminator is used to distin-
guish between the human-generated dialogues and the machine-generated ones
are jointly trained.

3 Methodology

The task this research work aims to solve is of identification of Hindi in translit-
eration text in Roman Script. The approaches used to tackle the problem solving
are based on Deep leaning techniques primarily Neural Networks. It can be noted
that no domain-specific resources and/or tools were used for development be-
cause it was intended that the work must maintain domain-independence prop-
erty. That means the architecture can be easily used for other language pairs
provided novel features can be extracted within the text. The latter part of this
section describes the approach that was followed in developing each part of the
model.

3.1 language Identification

Language identification concerns itself with identifying the origin of a particular
word or a group of words. The problem statement can be thought of as a case
of classification problem, where a group of text or a sentence has to be assigned
one of the labels denoting the language it is.Hindi being a original to a non Latin
script the method proposed for language identification is based on supervised
machine learning. Here certain features present in the text are extracted to build
a feature vector. This vector is propagated into a artificial neural network by
means of which detection of the language is done.

3.2 Feature Extraction

The sentences in the corpus are formatted, broken into tokens and checked for
certain features which then helps the model build a feature vector. There are
multiple approaches that are being followed and various features are used to
identify languages.The features used for identification of language are described
below.

1. Character n-gram: Character n-gram are a continuous sequence of alphabets
extracted. Here N in N-gram stands for the number of characters which are
taken into consideration for defining the probability of next character.That
is the size of a moving window which defines previous characters taken into
consideration.The common n-grams that are generated for length one (uni
gram), two(bi-gram) and three (tri-gram). These kind of feature were also
used in previous works [2].
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2. First letter Capital: The feature is a binary one. It checks for presence of a
capital letter at start of every word in sentence.Words starting with capitals
can be good indication of Named Entities and thus can be independent of
language.

3. Alphanumeric: While parsing the sentences such tokens with syllables are
looked for which start with a punctuation. For example {:P,:) ;)} do not
belong to any language and must not be used to influence the feature vector.

4. Finite Rule:This research work helped develop a novel rule based on linguis-
tic construct of Hindi language. The construct is although very specific to
Hindi but can be used for all Indian Languages with similar features like
Sanskrit,Oriya, Punjabi etc. Therefore this research work also contributes to
language detection by proposing a novel feature which is alone sufficient to
classify transliterated Hindi text in roman script as Hindi. The Hindi lan-
guage is written in Devanagari script. With their being phonetic similarities
between English vowels and Hindi vowels Y as they are usually similar one
or two English vowels clubbed together. The Devanagari consonants have a
“inherent a” sound. With each consonant the schwa sound must also be
pronounced. And in majority of words have a common pattern within them-
selves. The consonant sounds are followed by a vowel sound. Which means in
the transliterated text consonants will be followed by vowels very frequently.
The below two images explain the construct of Hindi vowels and consonants
and also show their close transliterate text.

Its been discussed that transliteration and identification of transliterated
text relies on the understanding of the native script the language uses. Hindi
has twice as many vowels as English. Where vowels can be classified into two
particular categories. Long vowels and Short vowels which are articulated on
basis of duration of time. The longer vowels are usually transliterated to En-
glish using syllables as a combination of vowels. For example (%) the ¥ is
present in feet is "ee” whereas ¥ is ”i” type in bin.

In figure 1 and 2 we can see that the phonetic mapping is attempted. Before
NMT One of the first steps was to create a mapping of Hindi phones and
English phones for getting the transcriptions of Hindi characters. As an tran-
sitory step from the Hindi characters one could generate English using older
version of Google Transliteration which used the International Alphabet of
Sanskrit Transliteration (IAST) scheme. English recognizer could then be
used to search through Hindi for English phonemes that correspond to the
Hindi syllables.

3.3 Review of auto-encoders and GAN

The main components of the model that are used as the building blocks are
discussed below.

Artificial Neural Networks A neural network is a computation graphical
model that is build using many smaller units of computation. These small units
called neurons are "hooked” with each other to create a graph.Each neuron is
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a computational unit which takes input vector and applies a dot product with
the weights of the graph to produce the output which is then squashed between
0 to 1 using a sigmoid or some other activation function.

1 ifwy+wizy + ... +wpz, >0
—1 otherwise

(L1, .y Tn) = {

Above is a output of a perceptron unit. For a neuron the output is usually in

form of
1

1+ exp(y; wijz; + b;)

(1)

Then error loss is calculated and weight update procedure takes place for the
network using backpropagation algorithm.

Auto-Encoders Auto-encoders are a particular case of neural networks. The
model consists of two parts that go into the auto-encoder to complete it. The
encoder part that encodes the given data into a latent compact representation.
The next half of the auto-encoder acts as the ”"decoder” generating a close repre-
sentation to data using the latent representation. Within the auto-encoders is a
variational auto-encoder(VAE) which acts as a generative model and not a model
that can memorize the datasets by mapping them to latent representations. The
constraint on encoder is put i.e. model defines a posterior distribution on the
observed data given the latent representation. Let e ~ p(e) where p(e) is usually
taken to be unit Gaussian distribution.Also = and g(e|z) are the observed data
and probability of e given x respectively. Now any latent representation when
sampled from unit Gaussian may be decoded to generate images. The loss func-
tion which is being used is a two sum. It deals with the trade-off of reconstruction
and how nicely does the latent representation match Gaussian distribution.

. palop(e)
9= (ele)

Generative Adversarial Networks The Generative Adversarial Networks
or GANs are a set of two competing neural networks. The two halves being
generator and the discriminator respectively. The Generator Network generates
the counterfeit data close to the actual data in its attempt to mimic the real
data. Whereas the Discriminator network tries to find differences in the real and
the fake data.That is the data from the dataset and the data generated by the
Generator network. Thus both networks play a ”game” with each other training
themselves to get better at what they do. Eventually the generator becomes
good enough to fool the discriminator network generating images very similar to
the dataset images. The learning is formulated by following min-max operation.
The Z is the generated data. Where the D that is the Discriminator is trained to
maximize the probability of correct classification and G that is the Generator is
trained to minimize the same.Here D(.) defines the final output of discriminator
and G(.) defines final output of the generator. So the first term in the equation
is the term responsible for improving the accuracy of correct classification and

) = log(p(zle)) + Dx(q(elz)||p(e)) (2)
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second term in equation is responsible for reducing the accuracy of incorrect
classification so for discriminator to be better trained we need to maximize the
inner expression where as the generator works adversarially to minimize the
experssion that is to fool the discriminator.

min max|E; (log(D(x)) + Ee(log(1 — D(2))] (3)

3.4 Propagation in Model

GAN

SSReEBr Discriminator
~~~~~~~~~ —| [EERE |- ~| cann
4
i

Auto encoder

Raw Text

Fig. 3: Block diagram of Model

This section aims to explain the model and also deals with brief discussion
of main components in our model which are made using the encoder eANN
and the decoder dANN. The GAN part consists of generator dANN and the
discriminator cANN. As we can see that the decoder part of the auto-encoder
is same as the generator part of the GAN. Our goal is illustrated in 3 where
we tell that we select features and then make a final layer feature vector which
is basically a score vector based on those features. Now to train such network
what do we do is we generate the score vector that is made using the Generator
network. Then we compare the two score vectors which can then be used to train
the network.

Now considering the raw text we extract the set of features x. The feature vector
x is then forward propagated through a ANN giving us the score vector s which
is basically a set of values of giving indication to which language does the text
belong to s = {s; : s; € [0,1]}. The score vector is then multiplied to the feature
vector x resulting in a matrix. The matrix is the re-sized into a long vector which
is then fed to the encoder. The encoder produces a deep feature e specifically
for every feature vector. The decoder ANN or the dANN takes the e as the
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input and reconstructs the feature vector . The discriminator then is aimed
to distinguish between the original feature vector x and the feature vector &
generated by the generator network i.e. dANN. The classifier can be thought of
as assigning different class labels to the feature vectors x and & provided they can
be distinguished.The generator and discriminator are trained adversarial until
the discriminator is not able to distinguish between real and generated feature
vectors.

3.5 Training the model

This section specifies our training of our neural network and our auto-encoder
parameters {ws, we,wq}, defining the score ANN or the SANN, the encoder or
the eANN and the decoder or the dANN respectively. There is also training of
the GAN parameters {wgq,w.} , defining the generator network or the dANN
and the discriminator network or the cANN. It can be observed that the same
dANN is part of both autoencoder as the decoder and acts as the generator in
GAN.

Our training is based on four loss functions. Loss of Gan L5 ax Loss of autoen-
coder Lycconstruct prior loss Lyior and regularization loss Lsparsity- The idea
behind training our model is to have a additional score vector s, which is taken
from some prior distribution s, ~ p(s,). Now multiplying the input feature vec-
tor to the s, gives us the input to eANN producing the encoded representation
ep. Given e, we reconstruct the vector similar to input feature vector as .
Now £, can be used as a means to regularize the cANN such that it can very
accurately label #, to be of the summary class. That also gives the model a
threshold to train upto. That the cANN can classify 2, as summary but gives
Z original label. The training algorithm thus iteratively updates the given three
sets of parameters.

— for parameters {ws,w.} the gradient descent is calculated using Lprior +
Ereconstruct

— for parameters wy the gradient descent is calculated using Lo an + Lreconstruct

— for parameters w, the gradient descent is calculated using Loan

Reconstruction Loss L cconstruct The current standards for learning mech-
anism in autoencoders use euclidean distances for calculating the difference in
actual and reconstructed output.Nevertheless there have been certain recent find-
ings demonstrating the shortcomings of using euclidean distance as a means to
calculate loss[9]. Therefore the reconstruction 108s L cconstruct 1S defined using
the output of the last hidden layer of the discriminator ANN. The loss is modelled
as expectation of log likelihood of p(p(x)/e) where p(z) represents the feature
vector in the hidden layer of discriminator ANN and e is the encoded output of
encoder ANN.

ﬁreconstruct = E[p(p($)/€)] (4)
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Loss of Gan Lgan Taking inspiration from [9] the goal to train the discrim-
inator is that it can classify the reconstructed feature vector z as ’fake’ and
original feature vector sequence z as ’original’. For regularization of the model
being trained it is additionally enforced that the model learns to classify set of
randomly generated feature vectors &, as 'fake’. Therefore the loss is expressed
as:

Laan =log(cANN (z)) + log(l1 — cANN(z)) + log(1 — cANN(Z,)) (5)

Here cANN(.) denotes the output of the discriminator ANN. Given the defini-
tions of Lyeconstruct and Laany we update the parameters wg, we, wq, W, using
stochastic gradient descent. The algorithm given below summarizes each step
for training the model. The capital letter notation is used to show that variable
stands for mini-batch of corresponding small alphabets used in the paper.

Algorithm 1 Training the model

1: function UPDATE PARAMS > where input is the feature vector secquence and
output is learned parameters ws, we, wq, wWC

2 for m doax number of iterations do
3 X = MiniBatchO f FeatureSequences
4: S =sANN(X) > select frames
5: E=cANN(X,S) > encoding
6: X =dANN(E) > Reconstruction
7 Sp = DrawSamplesFromUni formDistribution
8: E, =eANN(X,S,) > encoding
9: XpdANN (Es,) > Reconstruction
10: {ws, we} = {ws, we} — V(Lreconstruct + Lprior) > weight updates
11: {wd} = {wd} - V(ﬁreconstruct + »CGAN)
12: {we} ={we} + V(Lean) > Maximization Update
4 Results

4.1 Training results

The data set is scraped from reliable sources and then was verified through
Google Detection API [12] by sending an HTTP request using a URL[13].The
verified data set was divided into training and testing data sets in the ratio
80:20.The training data set was further divided into training and validation
data sets in the ratio 80:20.Our model is trained on a batch size of 10000 words
and an accuracy vs epochs graph is plotted where x-axis represents the number
of epochs and y-axis represents accuracy of the model.The blue line denotes the
accuracy on validation data set and red line denotes the accuracy on training
data set.Accuracy of the model can be seen increasing on subsequent epochs
from the graph on both training as well as on validation data. In 5 we talk
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Accuracy vs epochs plot
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Fig. 4: Graph of Accuracy over Training data and validation data

loss vs epochs plot
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Fig. 5: Graph of Loss over Training data and validation data

about loss.the loss taken is the sum of all individual losses and then scaled using
a constant.

4.2 Comparative results

Google detector is used for comparison of accuracy with our model. The test data
was divided into different categories-1 word,2 words,5 words,10 words and more
than 10 words each having a batch size of 10000 examples.Both ours as well as
Google model was tested on these 5 categories and results were plotted on the
graph,where x-axis represents number of words and y-axis represents accuracy
of model.The blue line denotes the accuracy of Google detector and green line
denotes the accuracy of proposed model.For data set of 1 words category,both
Google detector and our model gives relatively low accuracy as it includes both

11
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unambiguous and ambiguous words. Ambiguous words are those which have same
spelling in different languages like ”arre” is detected as English while it is more
commonly used in Hindi.Similarly words like "kahan”,”jab” are also detected
as English.Hence the relatively lower accuracy of 1 word data set is justified
due to ambiguity.For data set of 2 words category the accuracy of both Google
and proposed model increases rapidly as ambiguity is much less than 1 word.On
increasing the word count per example in data set to 5 words per testing example
the Google detector achieves 100 percent accuracy.It can be seen from the graph
that our proposed model is giving sufficient accuracy when the number of words
are increased above 5 and it almost achieves 100 percent accuracy when word
count of test data per example increases above 10 words.

Accuracy of model
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80
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Accuracy in percent
@
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@
a

40

20
1 2 5 10 >10

-®- Google Detector Proposed Model

meta-chart.con

Fig. 6: Comparative Results of accuracy over number of words in input

5 Conclusion

The model proposed performs with reliable accuracy when number of words
in data set per example are more than 10 and with sufficient accuracy when
number of words are less than 10.Our proposed model gives comparable results
with Google detector.It can be concluded from the results that semi-supervised
learning models such as ours can use Generative Adversarial Networks for Hindi
language identification and for transliterated text identification in general with
great accuracy.Thus the comparison with state of the art Google Language detec-
tion establishes that the model using feature extraction and then unsupervised
learning of parameters is also at par with the current standards in language
detection. It also opens up new frontiers were experiment with different types
of deep learning models can be done which train in completely unsupervised
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fashion.Eventually even removing the need to engineer features in such models
is a open challenge which future research can look into.
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